Directly reprogramming fibroblasts into adipogenic, neurogenic and hepatogenic differentiation lineages by defined factors
نویسندگان
چکیده
The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types represents a great potential technology for regenerative medicine. In the present study, the potential of key developmental adipogenic, neurogenic and hepatogenic regulators to reprogram human fibroblasts into adipocytes, neurocytes and hepatocytes was investigated. The results demonstrated that direct reprogramming of octamer-binding transcription factor 4 (Oct4) and CCAAT-enhancer-binding protein (C/EBP)β activated C/EBPα and peroxisome proliferator-activated receptor-γ expression, inducing the conversion of fibroblasts into adipocytes. Similarly, direct reprogramming of the transcription factors sex determining region-box 2, trans-acting T-cell specific transcription factor (GATA-3) and neurogenic differentiation 1 in fibroblasts may induce neurogenic differentiation through hemagglutinating virus of Japan envelope (HVJ-E) transfection. Moreover, hepatogenic differentiation was induced by combining the direct reprogramming of Oct4, GATA-3, hepatocyte nuclear factor 1 homeobox α and forkhead box protein A2 in fibroblasts. These results demonstrate that specific transcription factors and reprogramming factors are able to directly reprogram fibroblasts into adipogenic, neurogenic and hepatogenic differentiation lineages by HVJ-E transfection.
منابع مشابه
Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses
BACKGROUND Mesenchymal stem cells (MSC) are multipotent progenitor cells characterized by their ability to both self-renew and differentiate into tissues of mesodermal origin. The plasticity or transdifferentiation potential of MSC is not limited to mesodermal derivatives, since under appropriate cell culture conditions and stimulation by bioactive factors, MSC have also been differentiated int...
متن کاملمطالعه تاثیر بیش بیان ژن OCT4 و مهار همزمان ژن P53 بر بیان ژنهای پرتوانی در سلولهای بنیادی بافت چربی انسان
Background and Objective: OCT4 is the most important transcription factor for reprogramming of somatic cells and maintenance of pluripotency. Moreover, it has recently been shown that loss of P53 or its mutations improve the efficiency of reprogramming. This study was designed to reprogram human adipose tissue-derived stem cells (ADSCs) by overexpression of OCT4 and inhibition of P53 expression...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملEvaluation of Neurogenic Potential of Human Umbilical Cord Mesenchymal Cells a Time- and Concentration- Dependent Manner
Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipoge...
متن کاملDirect Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors
The reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblasts exists in the postnatal heart, yet no single "master regulator" of direct cardiac reprogramming has been identified. Here, we report that a comb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017